MAP Estimation, Linear Programming and Belief Propagation with Convex Free Energies

نویسندگان

  • Yair Weiss
  • Chen Yanover
  • Talya Meltzer
چکیده

Finding the most probable assignment (MAP) in a general graphical model is known to be NP hard but good approximations have been attained with max-product belief propagation (BP) and its variants. In particular, it is known that using BP on a single-cycle graph or tree reweighted BP on an arbitrary graph will give the MAP solution if the beliefs have no ties. In this paper we extend the setting under which BP can be used to provably extract the MAP. We define Convex BP as BP algorithms based on a convex free energy approximation and show that this class includes ordinary BP with single-cycle, tree reweighted BP and many other BP variants. We show that when there are no ties, fixed-points of convex max-product BP will provably give the MAP solution. We also show that convex sum-product BP at sufficiently small temperatures can be used to solve linear programs that arise from relaxing the MAP problem. Finally, we derive a novel condition that allows us to derive the MAP solution even if some of the convex BP beliefs have ties. In experiments, we show that our theorems allow us to find the MAP in many real-world instances of graphical models where exact inference using junction-tree is impossible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Programming and Belief Propagation with Convex Free Energies Applications in Computer Vision and Computational Biology

The task of finding the most probable explanation (or MAP) in a graphical model comes up in a wide range of applications including image understanding [9], error correcting codes [2] and protein folding [11]. For an arbitrary graph, this problem is known to be NP hard [8] and various approximation algorithms have been proposed (see. e.g [5] for a recent review). Linear Programming (LP) Relaxati...

متن کامل

LPQP for MAP: Putting LP Solvers to Better Use

MAP inference for general energy functions remains a challenging problem. While most efforts are channeled towards improving the linear programming (LP) based relaxation, this work is motivated by the quadratic programming (QP) relaxation. We propose a novel MAP relaxation that penalizes the Kullback-Leibler divergence between the LP pairwise auxiliary variables, and QP equivalent terms given b...

متن کامل

Convergent Message-Passing Algorithms for Inference over General Graphs with Convex Free Energies

Inference problems in graphical models can be represented as a constrained optimization of a free energy function. It is known that when the Bethe free energy is used, the fixed-points of the belief propagation (BP) algorithm correspond to the local minima of the free energy. However BP is guaranteed to converge only for acyclic graph models. Moreover, the Bethe free energy is nonconvex for gra...

متن کامل

Tightness Results for Local Consistency Relaxations in Continuous MRFs

Finding the MAP assignment in graphical models is a challenging task that generally requires approximations. One popular approximation approach is to use linear programming relaxations that enforce local consistency. While these are commonly used for discrete variable models, they are much less understood for models with continuous variables. Here we define local consistency relaxations of MAP ...

متن کامل

Convexifying the Bethe Free Energy

The introduction of loopy belief propagation (LBP) revitalized the application of graphical models in many domains. Many recent works present improvements on the basic LBP algorithm in an attempt to overcome convergence and local optima problems. Notable among these are convexified free energy approximations that lead to inference procedures with provable convergence and quality properties. How...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007